

Operating beyond PV curves

Marija Ilic milic@netssinc.com

with contributions by

Jeffrey Lang jeffrey.lang@netssinc.com;

Sanja Cvijic sanja.cvijic@netssinc.com

Jiangzong Tong PJM Jianzhong.Tong@pjm.com

Diran Obadina ERCOT Diran. Obadina@ercot.com

Staff Technical Conference: Increasing Real-time and Day Ahead Market Efficiency through Improved Software

Docket No. **AD10-12-005**

June 23 – 25, 2014

Washington DC, June 24-26, 2013

All copyrights reserved

Main messages

- Impact of optimal voltage dispatch in today's practice:
 - -PV curves better with voltage dispatch since maximum power transfer always higher
 - -DC OPF accounts for voltage with PV curve limits; more efficient with voltage dispatch
 - -Region-to-region PV curves in large systems "similar" to point-to-point PV curves
- Recommended future practice—Beyond PV curves (***the issue: selection of interface limits***)
 - -Use AC OPF for the entire system without observing net interface limits; much more efficient with voltage dispatch
 - -AC OPF enables both economic and physical efficiency
- Demonstration of extended AC OPF with voltage dispatch for systems up to 30,000 buses

Study systems

- IEEE 14 bus
- ERCOT planning case from August 2013 (6,355 buses)
- PJM operations case from November 2012 (13,940 buses)
- PJM planning case (34,171 buses obtained by truncating half of PJM FERC 715)

IEEE 14 bus system

Set up for PV curve –IEEE 14 bus system

- Maximizing transfer from
 - Generator at bus 2 to load at bus 14
 - Bus 1 is slack
- PV curve is generated
 - Through incremental increase of load at bus 14 by 10% at each step (both P and Q of the load are scaled)
 - While real power output of generator at bus 2 is increased by the same amount (10% of Pl at bus 14) at each time step
- Voltage collapse happens when no feasible AC power flow solution is found

Constraints

- Thermal AC line limits are ignored
- Thermal transformer limits are ignored
- Generation Q limits are both ignored or observed in different scenarios
- No limits on real and reactive power of the slack generator

Types of PV curves

- Power flow PV curve
 - All set points of generators are fixed (P and V) (current practice)
- PV curve with voltage optimization
 - Voltage set points of generators are optimized
- PV curve with optimization of real power
 - Real power outputs of generators are optimized
- PV curve with optimization of both voltage and real power
 - Real power outputs and voltage set points of generators are optimized

Creating PV Curve With Fixed Generator Voltages

Creating PV Curve With Variable Generator Voltages

Minimum System Voltage

Varying V_G over $V_{GMin} \le V_G \le V_{GMax}$ yields a feasible band.

Select the V_G for each ΔP via optimization. For example, loss minimization will also tend to push the minimum system voltage higher and permit greater transfer.

Optimization Setup: All Fixed—Similar to current practice

- Optimization objective:
 - Loss minimization (feasible space is a single point)
 - Cost of all generators is \$100/MWh
- Constraints:
 - Voltage magnitude limits are equal to
 - Generator set points at generator regulated buses
 - Vmin= 0.3pu, Vmax=2pu at all other buses
 - Real power generation limits are equal to
 - Real power generated (except for slack)
 - Reactive power generation limits are
 - Observed/Ignored in two different scenarios
 - All AC and transformer thermal limits are ignored
- For each point on PV curve this optimization is executed after increasing source generation by *X* MW and the sink load by *X* MW

Optimization Setup: Vg variable

- Optimization objective:
 - Loss minimization (tends to raise receiving voltages)
 - Cost of all generators is \$100/MWh
- Constraints:
 - Voltage magnitude limits are equal to
 - Vmin=0.9pu and Vmax=1.1pu at generator regulated buses
 - Vmin= 0.3pu, Vmax=2pu at all other buses
 - Real power generation limits are equal to
 - Real power generated (except for slack)
 - Reactive power generation limits are
 - Observed/Ignored in two different scenarios
 - All AC and transformer thermal limits are ignored
- For each point on PV curve this optimization is executed after increasing source generation by *X* MW and the sink load by *X* MW

Optimization Setup: Pg variable

- Optimization objective:
 - Loss minimization
 - Cost of all generators is \$100/MWh
- Constraints:
 - Voltage magnitude limits are equal to
 - Generator set points at generator regulated buses
 - Vmin= 0.3pu, Vmax=2pu at all other buses
 - Real power generation limits are equal to
 - Originally specified real power generation limits
 - Reactive power generation limits are
 - Observed/Ignored in two different scenarios
 - All AC and transformer thermal limits are ignored
- For each point on PV curve this optimization is executed after increasing source generation by *X* MW and the sink load by *X* MW

Optimization Setup: Pg and Vg variable

- Optimization objective:
 - Loss minimization
 - Cost of all generators is \$100/MWh
- Constraints:
 - Voltage magnitude limits are equal to
 - Vmin=0.9pu and Vmax=1.1pu at generator regulated buses
 - Vmin= 0.3pu, Vmax=2pu at all other buses
 - Real power generation limits are equal to
 - Originally specified real power generation limits
 - Reactive power generation limits are
 - Observed/Ignored in two different scenarios
 - All AC and transformer thermal limits are ignored
- For each point on PV curve this optimization is executed after increasing source generation by *X* MW and the sink load by *X* MW

IEEE 14 bus PV curves without Q limits

IEEE 14 bus-Dependence of DC OPF efficiency on PV-curves

Case	PV curve voltage dispatch	Int. Defn.	Voltages	PG 2 (MW); PL 14 (MW)	Line flows (MW)	Interface flow (MW)	DC OPF cost with PV curve (\$/hour)	Power loss (MW)
1	No	2-3; 2-4; 2-5; 1-5	VL,14=.585; VG,1=1.06;VG,2=1.045; VG,3=1.01; VG,6=1.07; VG,8=1.09	PG,2=.3999; QG,2=2.61; PL,14=1.356; QL,14=.455	P2,1=-3.91; P2,3=.975; P2,4=.984; P2,5=.775	Pint,1=.399	\$7650	0 MW
2	No	14-13; 14-9	VL,14=.585; VG,1=1.06;VG,2=1.045; VG,3=1.01; VG,6=1.07; VG,8=1.09	PG,2=.3999; QG,2=2.61 PL,14=1.356; QL,14=.455	P14,13=58; P14-9=775	Pint,2=1.356	\$7650	0 MW
3	Yes	2-3; 2-4; 2-5; 1-5	VL,14=.606; VG,1=1.10;VG,2=1.10; VG,3=1.09; VG,6=1.10; VG,8=1.10	PG,2=.399; QG,2=2.848; PL,14=1.4485; QL,14=.4860	P2,1=-4.07; P2,3=1.016; P2,4=1.003; P2,5=.788	Pint,1=.399	\$7650	0MW
4	Yes	14-13; 14-9	VL,14=.606; VG,1=1.10;VG,2=1.10; VG,3=1.09; VG,6=1.10; VG,8=1.10	PG,2=.399; QG,2=2.848; PL,14=1.4485; QL,14=.4860	P14,13=83; P14-9=616	Pint,2=1.448	\$7650	0MW

New net load (PL,14=1.40; QL,14=.5)

- Could happen either because of load increase or loss of (coal) plant
- Thermal limits of lines 1
- DC OPF not feasible with V=1

IEEE 14 bus-Dependence of DC OPF efficiency on PV-curves (new load at 14)

Case	PV curve voltage dispatch	Int. Defn.	Voltages	PG 2 (MW); PL 14 (MW)	Line flows (MW)	Interface flow (MW)	DC OPF cost with PV curve (\$/hour)	Power loss (MW)
1	No	2-3; 2-4; 2-5; 1-5	VL,14=.585; VG,1=1.06;VG,2=1.045; VG,3=1.01; VG,6=1.07; VG,8=1.09	PG,2=.3999; QG,2=2.61; PL,14=1.356; QL,14=.455	P2,1=-3.91; P2,3=.975; P2,4=.984; P2,5=.775	Pint,1=.399	Fails	
2	No	14-13; 14-9	VL,14=.585; VG,1=1.06;VG,2=1.045; VG,3=1.01; VG,6=1.07; VG,8=1.09	PG,2=.3999; QG,2=2.61 PL,14=1.356; QL,14=.455	P14,13=58; P14-9=775	Pint,2=1.356	Fails	
3	Yes	2-3; 2-4; 2-5; 1-5	VL,14=.606; VG,1=1.10;VG,2=1.10; VG,3=1.09; VG,6=1.10; VG,8=1.10	PG,2=.399; QG,2=2.848; PL,14=1.4485; QL,14=.4860	P2,1=-4.07; P2,3=1.016; P2,4=1.003; P2,5=.788	Pint,1=.399	Fails	
4	Yes	14-13; 14-9	VL,14=.606; VG,1=1.10;VG,2=1.10; VG,3=1.09; VG,6=1.10; VG,8=1.10	PG,2=.399; QG,2=2.848; PL,14=1.4485; QL,14=.4860	P14,13=83; P14-9=616	Pint,2=1.448	Fails	

Beyond PV curves--New load can be served with AC OPF!!!

- Voltages found which make the delivery feasible
- No load shedding required
- Critical in the future when plants retire and new come on
- AC OPF makes the system feasible by adjusting voltages!!!

Economic efficiency comparison of DC OPF with PV curve line limits and AC OPF

- The case of initial load.
- Generation cost appears to be lower with DC OPF
- Misleading because there are marginal costs associated with voltage limits and reactive power balancing
- Without enforcing these, the system is not physically implementable
- AC OPF more efficient with voltage dispatch (easy to show): cost = \$9911 with Vg = 1.05; cost = \$8126 with $Vg \le 1.05$.
- Must have market for AC OPF

ERCOT PV CURVE SETUP

Optimization Setup: All Fixed

- Optimization objective:
 - Loss minimization
 - Cost of all generators is \$100/MWh
- Constraints:
 - Voltage magnitude limits are equal to
 - Generator set points at generator regulated buses
 - Vmin= 0.3pu, Vmax=2pu at all other buses
 - Real power generation limits are equal to
 - Real power generated (except for slack buses: 5920, 6103, 86101, 110015)
 - Reactive power generation limits are observed
 - All AC and transformer thermal limits are ignored
 - All transformers and shunts are fixed
- For each point on PV curve this optimization is executed after increasing
 - source generation (wind in the west)by 200 MW proportional to capacity of each generator
 - the sink (NCEN) loads by 200 MW evenly across loads

Optimization Setup: Vg variable

- Optimization objective:
 - Loss minimization
 - Cost of all generators is \$100/MWh
- Constraints:
 - Voltage magnitude limits are equal to
 - Vmin=0.95pu and Vmax=1.05pu at generator regulated buses
 - Vmin= 0.3pu, Vmax=2pu at all other buses
 - Real power generation limits are equal to
 - Real power generated (except for slack buses: 5920, 6103, 86101, 110015)
 - Reactive power generation limits are observed
 - All AC and transformer thermal limits are ignored
 - All transformers and shunts are fixed
- For each point on PV curve this optimization is executed after increasing
 - source generation (wind in the west)by 200 MW proportional to capacity of each generator
 - the sink (NCEN) loads by 200 MW evenly across loads

Optimization Setup: Pg variable

- Optimization objective:
 - Loss minimization
 - Cost of all generators is \$100/MWh
- Constraints:
 - Voltage magnitude limits are equal to
 - · Generator set points at generator regulated buses
 - Vmin= 0.3pu, Vmax=2pu at all other buses
 - Real power generation limits are equal to
 - Originally specified real power generation limits
 - Reactive power generation limits are observed
 - All AC and transformer thermal limits are ignored
 - All transformers and shunts are fixed
- For each point on PV curve this optimization is executed after increasing
 - source generation (wind in the west)by 200 MW distributed in proportion to capacity of each generator
 - the sink (NCEN) loads by 200 MW evenly across loads

Optimization Setup: Pg and Vg variable

- Optimization objective:
 - Loss minimization
 - Cost of all generators is \$100/MWh
- Constraints:
 - Voltage magnitude limits are equal to
 - Vmin=0.95pu and Vmax=1.05pu at generator regulated buses
 - Vmin= 0.3pu, Vmax=2pu at all other buses
 - Real power generation limits are equal to
 - Originally specified real power generation limits
 - Reactive power generation limits are observed
 - All AC and transformer thermal limits are ignored
 - All transformers and shunts are fixed
- For each point on PV curve this optimization is executed after increasing
 - source generation (wind in the west)by 200 MW distributed in proportion to capacity of each generator
 - the sink (NCEN) loads by 200 MW evenly across loads

ERCOT PV curves with Qg limits

PJM OPS case EAST Interface

Case	PJM voltage limits	Generator Voltage dispatch	Contingency	Received load (MW)	Interface Flow (MW)
Base	N/A		None	10,584 (+0)	1,309
1	Normal	Yes	None	16,766 (+6,182)	4,881
2	Emergency	Yes	None	17,626 (+7,042)	5,369
3	Emergency	Yes	ALBURTIS- JUANITA	17,368 (+6,784)	4,628
4	Emergency	Yes	ALBURTIS- WESCOSVI	17,617 (+7,035)	4,744
5	Emergency	Yes	PEACHBOT- LIMERICK	16,931 (+6,347)	3,645
6	Normal	No	None	11,467 (+883)	1,730

Economic Dispatch for PJM

Voltages	Generation Cost [\$]	Generator Revenue [\$]	Load Charge [\$]	Merchandis e Surplus [\$]	PJM Losses [MW]
Base	2,560,232				1113
Fixed	2,455,262	4,587,644	3,656,729	-930,915	1105
Variable	2,292,642	3,512,257	3,242,615	-269,642	991

 $(\$2,455,262 - \$2,292,642) * 24 * 365 \approx \$1.4 B value of voltage dispatch in PJM$

- PJM OPS case from 20 November 2010 at 10 AM
- Voltages maintained within normal operating limits
- Flows maintained within normal operating thermal limits
- Zonal LMPs within PJM used as the generation bids within the corresponding zones
 - LMPs taken from the corresponding date and time
 - $34.51 \text{ }^{\text{MW-Hr}} \leq \text{Bid} \leq 48.15 \text{ }^{\text{MW-Hr}} \text{ (approximately the fuel cost of coal)}$

Loss minimization for PJM

PJM Voltages	Load [MW]	Loss [MW]	Loss/Load [%]	Savings [MW-Hr/ Yr]
Base	62167	1113	1.79	
Fixed	62167	1098	1.77	131400
Variable	62167	1047	1.68	578160

- PJM OPS case from 20 November 2010 at 10 AM
- Voltages maintained within normal operating limits
- Flows maintained within normal operating thermal limits
- PJM generator real power (and voltage) dispatched to minimize losses

PJM estimates that they save 220,000 MW-Hr/year for a savings of \$17M.

Interface Transfer Study Using PJM Planning Case

Case	PJM VG	External VG	PJM Bus Voltage Limits	Total Sink Load [MW]	Increase [MW]
Base				23524	0
1	Fixed	Fixed	Not Used	23665	141
2	Fixed	Variable	Not Used	23978	454
3	Variable	Fixed	Not Used	25444	1920
4	Variable	Fixed	Normal	24581	1057
5	Variable	Variable	Normal	27439	3915

- Study PJM EAST Interface
 - Optimization objective is to increase the net load in the receiving region
 - Power increase is supplied only by generators in the sending region
 - Examine importance of voltage dispatch; voltage limited only as specified
 - Thermal flow limits are ignored
- PJM (FERC-715) planning case for 2017 truncated to 34171 buses

Electricity Prices With Fixed VG in PJM

Electricity Prices With Variable VG in PJM

Conclusions

- Voltage dispatch plays major role in both physical delivery (feasibility and efficiency) and in economic efficiency
- Often variable voltage more valuable than line
- Prices less volatile with variable voltage dispatch
- Planning case closer to non-feasible condition than operations cases (higher loading conditions, less room for transfer increase)
- Market incentives are needed to reap benefits from voltage dispatch